11,829 research outputs found

    Computer simulator for a mobile telephone system

    Get PDF
    A software simulator was developed to help in the design of the LMSS. The simulator is used to study the characteristics and implementation requirements of the LMSS' configuration

    Computer simulator for a mobile telephone system

    Get PDF
    A software simulator to help NASA in the design of the LMSS was developed. The simulator will be used to study the characteristics of implementation requirements of the LMSS's configuration with specifications as outlined by NASA

    Two-Dimensional Electrons in a Strong Magnetic Field with Disorder: Divergence of the Localization Length

    Full text link
    Electrons on a square lattice with half a flux quantum per plaquette are considered. An effective description for the current loops is given by a two-dimensional Dirac theory with random mass. It is shown that the conductivity and the localization length can be calculated from a product of Dirac Green's functions with the {\it same} frequency. This implies that the delocalization of electrons in a magnetic field is due to a critical point in a phase with a spontaneously broken discrete symmetry. The estimation of the localization length is performed for a generalized model with NN fermion levels using a 1/N1/N--expansion and the Schwarz inequality. An argument for the existence of two Hall transition points is given in terms of percolation theory.Comment: 10 pages, RevTeX, no figure

    Two-component Bose gas in an optical lattice at single-particle filling

    Full text link
    The Bose-Hubbard model of a two-fold degenerate Bose gas is studied in an optical lattice with one particle per site and virtual tunneling to empty and doubly-occupied sites. An effective Hamiltonian for this system is derived within a continued-fraction approach. The ground state of the effective model is studied in mean-field approximation for a modulated optical lattice. A dimerized mean-field state gives a Mott insulator whereas the lattice without modulations develops long-range correlated phase fluctuations due to a Goldstone mode. This result is discussed in comparison with the superfluid and the Mott-insulating state of a single-component hard-core Bose.Comment: 11 page

    Interacting bosons in an optical lattice: Bose-Einstein condensates and Mott insulator

    Full text link
    A dense Bose gas with hard-core interaction is considered in an optical lattice. We study the phase diagram in terms of a special mean-field theory that describes a Bose-Einstein condensate and a Mott insulator with a single particle per lattice site for zero as well as for non-zero temperatures. We calculate the densities, the excitation spectrum and the static structure factor for each of these phases.Comment: 17 pages, 5 figures; 1 figure added, typos remove

    Strong Balmer lines in old stellar populations: No need for young ages in ellipticals?

    Get PDF
    Comparing models of Simple Stellar Populations (SSP) with observed line strengths generally provides a tool to break the age-metallicity degeneracy in elliptical galaxies. Due to the wide range of Balmer line strengths observed, ellipticals have been interpreted to exhibit an appreciable scatter in age. In this paper, we analyze Composite Stellar Population models with a simple mix of an old metal-rich and an old metal-poor component. We show that these models simultaneously produce strong Balmer lines and strong metallic lines without invoking a young population. The key to this result is that our models are based on SSPs that better match the steep increase of Hbeta in metal-poor globular clusters than models in the literature. Hence, the scatter of Hbeta observed in cluster and luminous field elliptical galaxies can be explained by a spread in the metallicity of old stellar populations. We check our model with respect to the so-called G-dwarf problem in ellipticals. For a galaxy subsample covering a large range in UV-V colors we demonstrate that the addition of an old metal-poor subcomponent does not invalidate other observational constraints like colors and the flux in the mid-UV.Comment: Accepted for publication in ApJ Main Journal, 9 pages, 5 figure

    On the fundamental group of the complement of a complex hyperplane arrangement

    Full text link
    We construct two combinatorially equivalent line arrangements in the complex projective plane such that the fundamental groups of their complements are not isomorphic. The proof uses a new invariant of the fundamental group of the complement to a line arrangement of a given combinatorial type with respect to isomorphisms inducing the canonical isomorphism of the first homology groups.Comment: 12 pages, Latex2e with AMSLaTeX 1.2, no figures; this last version is almost the same as published in Functional Analysis and its Applications 45:2 (2011), 137-14

    Friedel oscillations induced by non-magnetic impurities in the two-dimensional Hubbard model

    Full text link
    We study the interplay of correlations and disorder using an unrestricted Slave-Boson technique in real space. Within the saddle-point approximation, we find Friedel oscillations of the charge density in the vicinity of a nonmagnetic impurity, in agreement with numerical simulations. The corresponding amplitudes are suppressed by repulsive interactions, while attractive correlations lead to a charge-density-wave enhancement. In addition, we investigate the spatial dependence of the local magnetic moment and the formation of a magnetic state at the impurity site.Comment: 9 pages, RevTeX, includes 8 figure
    • …
    corecore